

Jet studies in 200 GeV d+Au collisions from the STAR experiment at RHIC

Jan Kapitán* (NPI ASCR, Czech Republic), for the STAR Collaboration

Abstract

Full jet reconstruction in heavy-ion collisions is a promising tool for the quantitative study of properties of the dense medium produced in heavy-ion collisions at RHIC.

Jet studies in d+Au collisions are important to disentangle initial state nuclear effects from medium-induced k_{τ} broadening and jet quenching.

We present inclusive jet p_T spectra in d+Au collisions from the 2007-2008 RHIC run. We discuss correction for detector effects and underlying event background, including systematic uncertainties.

STAR experiment

- acceptance: pseudo-rapidity $|\eta| < 1.0$, full azimuth
- detector subsystems used for jet reconstruciton:
- •charged energy: tracks from the Time Projection Chamber (TPC) •neutral energy: towers from the Barrel Electromagnetic Calorimeter (BEMC)
- 100% hadronic correction: associated charged track p_⊤ subtracted off tower E_{τ} : to avoid double-counting (MIP, electron&hadronic showers)
- 200 GeV d+Au data sample:
 - 20% highest multiplicity d+Au collisions: RHIC run 8 (2007-2008)
 - Minimum Bias (MB) trigger: ZDC East + VPD coincidence
- High Tower (HT2) trigger: ZDC East + BEMC tower E_→>4.3 GeV
- 200 GeV p+p data sample:
 - High Tower (HT2, BEMC tower E₋>4.3 GeV +BBC coincidence) data: RHIC run 8 (2007-2008)
 - High Tower triggered data: RHIC runs 3,4 (2003,2004) see [1] for details

Jet reconstruction

•jet algorithms:

• Mid Point Cone (MPC) algorithm with cone radius R=0.4 and split/merge fraction 0.5: p+p runs 3,4 • anti-k_T (from FastJet package [2,3]) with resolution parameter R=0.4 and 0.5: p+p and d+Au run 8

•treatment of d+Au background:

- method [4] based on background density ρ and jet active area A (using ghosts with area 0.01)
- k_T jet algorithm used to determine ρ on a per-event basis: ρ = median $\{r^i\}$, $r^i = p_T^i/A^i$
- background density ρ modulated by pseudorapidity (inherent asymmetry of d+Au system) • background subtraction: $p_T = p_T^{raw} - A^* \rho$
- background further reduced for analysis of k_{τ} effect by using a p_{τ} cut for tracks and towers: $p_{T}>0.5$ GeV/c, otherwise track/tower p_{T} limited only by detector acceptance ($p_{T}>0.2$ GeV/c)

Jet corrections

- detector effect corrections:
 - Pythia 6.410 ("PyMC") + STAR detector response simulation ("PyGe")
 - emulated trigger response
 - for jet spectra, tracking efficiencies from the simulation corrected for detector background effects (e.g. pile-up) using embedding of simulated tracks into real events at raw data level
- background fluctuations in d+Au quantified by embedding of Pythia jet events into real d+Au MB events at reconstructed track/tower level ("PyBg")
- Jet Energy Scale uncertainties run 8 analysis:
 - TPC tracking efficiency: 10% (improvements under study)
 - BEMC calibration uncertainty: 5%

Di-jet analysis

- two highest energy jets in event: $p_{T,1} > p_{T,2}$
- three bins in p_{T,2}: 7-10, 10-20, 20-30 GeV/c
- anti-k_T algorithm
- p_{T}^{cut} =0.5 GeV/c

ΔΦ distributions for jet pairs:

- clear high-purity di-jet signal observed
- signal (S) and background (B) values correspond to the dashed-line region

k_{τ} effect (di-jet $\Delta\Phi$ broadening):

- intrinsic k_→ (partons within hadrons)
- initial and final state radiation including Cold Nuclear Matter (CNM) effects
- radiation: soft (Gaussian) and hard (NLO, power-law tails)
- quantified via Gaussian fit to $p_{T,1}^* \sin(\Delta \phi)$ sensitivity to hard radiation is limited

k_T measurement

Di-jet events from run 8 p+p and d+Au data (HT2 trigger) Gaussian fit applied to $k_{Traw} = p_{T1} * sin(\Delta \Phi)$

Detector effects:

- same analysis run at Pythia simulated data
- detector effects on sigma widths of $k_{\scriptscriptstyle T}$ found to
- be negligible [5] due to interplay of jet $p_{\scriptscriptstyle T}$ and ϕ resolution

Results:

- values averaged over the two p_{T2} bins
- $\sigma_{kT,raw}(p+p) = 2.8 \pm 0.1 \text{ GeV/c}$
- $\sigma_{kT,raw}$ (d+Au) = 3.0 ± 0.1 GeV/c

Under study:

- evaluation of systematic uncertainties
- p_⊤ dependence (quark/gluon jets)

Comparison to di-hadron correlation method:

- results from π^0 -charged hadron correlations (see poster 231 [6])
- p+p collisions: $\sqrt{\langle k_T^2 \rangle} = 2.80 \pm 0.04(stat.) \pm 0.27(syst.)$ GeV/c • d+Au collisions: $\sqrt{\langle k_{\tau}^2 \rangle} = 3.41 \pm 0.03(\text{stat.}) \pm 0.31(\text{syst.})$ GeV/c

Jet p_T spectra:

- MB d+Au data (run 8) and HT p+p data (run 3,4 [1])
- bin-by-bin correction based on Pythia used (same shape of p_ spectra required and verified)

comparison of p+p jet cross-section to d+Au per-event jet yield:

- N_{hin} scaling used with $\langle N_{hin} \rangle = 14.6 \pm 1.7$
- •p+p inelastic cross-section 42 mb

- → No significant deviation from N_{bin} scaling observed
- → reduction of systematic uncertainties in progress: → jet embedding at raw data level for d+Au
- → jet analysis in run 8 p+p data

Effect of different η acceptance small for p_{τ} <30 GeV/c

Towards jet R_{dAu}:

- decrease systematic uncertainties
- HT2 d+Au data to increase p_⊤ reach
- p+p analysis with anti-k_→ algorithm

Conclusions

Measurements of k_⊤ effect

- → no strong CNM effects observed → consistent with di-hadron measurements
- Jet spectrum in d+Au:
- → no significant deviation from N_{hin} scaled p+p
- → large systematic uncertainties, improvements under way
- → R_{dAu} for jets: work in progress

References

- [1] B. Abelev et al. (STAR Collaboration), Phys.Rev.Lett. **97** (2006) 252001.
- [2] M. Cacciari and G. Salam, Phys. Lett. B641, (2006) 57-61. [3] M. Cacciari, G. Salam and G. Soyez, JHEP 0804, (2008) 063.
- [4] M. Cacciari and G. Salam, Phys. Lett. B659, (2008) 119-126.
- [5] J. Kapitán (for STAR Collaboration), PoS(EPS-HEP 2009)041.

[6] M. M. Mondal (for STAR Collaboration) Poster Board # 14, QM2011.

The 22nd International Conference on Ultrarelativistic Nucleus-Nucleus Collisions May 22 – 28 2011, Annecy, France

- * E-mail address: kapitan@rcf.rhic.bnl.gov
- This work was supported in part by grants LC07048 and LA09013 of the Ministry of Education of the Czech Republic

